Über Corina Kaiser

Der Autor hat bisher keine Details angegeben.
Bisher hat Corina Kaiser, 12 Blog Beiträge geschrieben.

CAUSAL MACHINE LEARNING – Korrelation, Kausalität und die verirrte Statistik

Spurious Correlations, D-Separation, Counterfactuals… und was haben eigentlich Bärte mit Machine Learning zu tun? In dieser Folge von The Erium Podcast gehen wir auf eine Reihe von Fachtermini ein und lüften dabei was – und vor allem auch was nicht – hinter den Begriffen steckt. Außerdem rufen Theo und Maksim die verirrte Statistik der Woche ins Leben, mit dem Untertitel „Daten lügen nicht, aber erzählen auch nicht immer die ganze Wahrheit“.

Du möchtest dich unbedingt zu diesem Thema mit weiteren Experten austauschen? Dann registriere dich jetzt bei unserer Data Science Meetup Gruppe: Link zur Registrierung

CAUSAL MACHINE LEARNING – Korrelation, Kausalität und die verirrte Statistik2021-07-08T06:56:53+00:00

CAUSAL MACHINE LEARNING – was ist das genau und wofür braucht man es?

Zum Auftakt der Staffel 4 klären wir zunächst den Begriff Causal Machine Learning. Die reine Statistik kümmert sich nicht um Kausalitäten. Der Mensch hingegen sucht lechzend nach kausalen Zusammenhängen. Das ist eine gefährliche Kombination. Durch Causal Machine Learning können wir diese Zusammenhänge nüchtern behandeln – so wie wir es von der Mathematik gewohnt sind. Theo und Maksim geben einen ersten Einblick wann und wo Causal ML genutzt wird.

Du möchtest dich unbedingt zu diesem Thema mit weiteren Experten austauschen? Dann registriere dich jetzt bei unserer Data Science Meetup Gruppe: Link zur Registrierung

CAUSAL MACHINE LEARNING – was ist das genau und wofür braucht man es?2021-07-08T06:56:05+00:00
Nach oben